On the twisted Alexander polynomial and the A-polynomial of 2-bridge knots

Vu Q. Huynh and Thang T. Q. Le

Abstract. We show that the A-polynomial $A(L, M)$ of a 2-bridge knot $b(p, q)$ is irreducible if p is prime, and if $(p - 1)/2$ is also prime and $q
eq 1$ then the L-degree of $A(L, M)$ is $(p - 1)/2$. This shows that the AJ conjecture relating the A-polynomial and the colored Jones polynomial holds true for these knots, according to work of the second author. We also study relationships between the A-polynomial of a 2-bridge knot and a twisted Alexander polynomial associated with the adjoint representation of the fundamental group of the knot complement. We show that for twist knots the A-polynomial is a factor of the twisted Alexander polynomial.

1. Background and conventions

1.1. Representation variety. Let K be a knot in S^3 and $X = S^3 \setminus K$ be its complement. Let $\pi = \pi_1(X)$ be the fundamental group of the complement. Let $R(\pi) = \text{Hom}(\pi, \text{SL}(2, \mathbb{C}))$ be the set of representations of π to $\text{SL}(2, \mathbb{C})$. This is a complex affine algebraic set, which is called the representation variety, although it might be a union of a finite number of (irreducible) algebraic varieties in the sense of algebraic geometry. The group $\text{SL}(2, \mathbb{C})$ acts on $R(\pi)$ by conjugation. The algebro-geometric quotient of $R(\pi)$ under this action is called the character variety of π, denoted by $X(\pi)$. The character of a representation ρ is the map $\chi_\rho : \pi \to \mathbb{C}$ determined by $\chi_\rho(\gamma) = \text{tr} \rho(\gamma)$, for $\gamma \in \pi$. There is a bijection between $X(\pi)$ and the set of characters of representations of π.

1.2. The A-polynomial. Let $B = (\mu, \lambda)$ be a pair of meridian-longitude of the boundary torus of X. Let R_U be the subset of $R(\pi)$ containing all representations ρ such that $\rho(\mu)$ and $\rho(\lambda)$ are upper triangular matrices:

$$\rho(\mu) = \begin{pmatrix} M & * \\ 0 & M^{-1} \end{pmatrix}, \quad \rho(\lambda) = \begin{pmatrix} L & * \\ 0 & L^{-1} \end{pmatrix}$$

(any representation can be conjugated to have this form). Then R_U is an algebraic set, because we only add the requirement that the lower left entries of $\rho(\mu)$ and $\rho(\lambda)$
are zeros. Define the projection map \(\xi : R_U \to \mathbb{C}^2 \) by \(\xi(\rho) = (L, M) \). Consider the Zariski closure \(\xi(R_U) \) of the projection \(\xi(R_U) \subset \mathbb{C}^2 \). It is known that \(\xi(R_U) \) is an algebraic set whose components have dimensions zero or one. If a component has dimension one then it is a curve defined by a single polynomial in \(L \) and \(M \). The product of these polynomials, divided by \(L \), is called the A-polynomial of \(K \). The reason for dividing by \(L \) is that if \(\rho(\lambda) \) is the identity matrix, therefore the component of \(\xi(R_U) \) corresponding to abelian representations is defined by a single equation \(L = 1 \). Thus in the construction of the A-polynomial one can restrict to nonabelian representations.

It is known that a multiple constant can be chosen so that the A-polynomial is an integer polynomial. We assume that the A-polynomial has no repeated factors; and that it has no integer factors, i.e. its coefficients are coprime. If instead of the basis \(B = (\mu, \lambda) \) we choose the other basis \((\mu^{-1}, \lambda^{-1}) \) then the pair \((L, M) \) is replaced by the pair \((L^{-1}, M^{-1}) \) as can be seen from \([1.1] \), and it is known that \(A_K(L^{-1}, M^{-1}) = \pm L^m M^n A_K(L, M) \). Thus \(A_K(L, M) \) is an integer polynomial defined up to a factor \(\pm L^m M^n \).

With finitely many exceptions, corresponding to a pair \((L, M) \) satisfying \(A(L, M) = 0 \) there is a nonabelian representation \(\rho \in R(\pi) \) for which \([1.1] \) holds.

For more on the A-polynomial we refer to [CCG+94], [CL96] and [CL98].

1.3. 2-bridge knots. Let \(p = 2n + 1 \), \(n \geq 1 \), and \(0 < q < p \), \(q \) is odd, \(\gcd(p, q) = 1 \). The fundamental group of the complement \(X \) of the 2-bridge knot \(b(p, q) \) has a presentation \(\pi = \pi_1(X) = \langle a, b | wa = bw \rangle \), where both \(a \) and \(b \) are meridians. The word \(w \) has the form \(a^{e_1} b^{e_2} a^{e_1} b^{e_2} \ldots a^{e_{2n-1}} b^{e_{2n}} \), where \(e_i = (-1)^{\lfloor iq/p \rfloor} \). In particular, if we read \(w \) from right to left and interchange \(a \) and \(b \) then we get \(w \) again. For example, \(b(2n + 1, 1) \) is the torus knot \(T(2, 2n + 1) \), and in this case \(w = (ab)^n \).

We adopt the convention that if \(\rho \in R(\pi) \) and \(x \) is a word then we write \(\text{tr} x \) for \(\text{tr} \rho(x) \). Let \(x = \text{tr} a \) and \(y = \text{tr} ab \). Thang Le [Le93] showed that the character variety \(\chi^{\text{aff}}(\pi) \) of nonabelian representations of \(\pi \) is determined by the polynomial \(\Phi_{(p,q)}(x, y) = \text{tr} w - \text{tr} w' + \cdots + (-1)^{n-1} \text{tr} w^{(n-1)} + (-1)^n \), where if \(x \) is a word then \(x' \) denotes the word obtained from \(x \) by deleting the two letters at the two ends.

For more on 2-bridge knots see [BZ03], and for representations of 2-bridge knot groups we refer to [Ril84] and [Le93].

1.4. Nonabelian and irreducible representations. A representation \(\rho \) is said to be reducible if the action (i.e. the linear map) it induces on \(\mathbb{C}^2 \) fix a one dimensional
The trefoil as the 2-bridge knot \(b(3, 1) \).

This is equivalent to saying that \(\rho \) can be conjugated to be a representation by upper triangular matrices (one can take an eigenvector of the linear map as a new basis vector for \(\mathbb{C}^2 \)). Otherwise \(\rho \) is said to be irreducible.

An elementary argument (as suggested above) would show that if \(\rho \) is irreducible then it is nonabelian. For 2-bridge knots we have a stronger result (Le93): Except finitely many cases, a nonabelian representation is irreducible. The Zariski closure \(\overline{X^{irr}(\pi)} \) of the set of characters of irreducible representations is exactly the character variety \(X^{nab}(\pi) \) of nonabelian representations. Therefore in some arguments we can consider irreducible representations instead of nonabelian representations.

1.5. The A-polynomial of 2-bridge knots. Suppose that \(\rho \) is an irreducible representation. After conjugations if necessary we may assume that

\[
\rho(a) = \begin{pmatrix} M & 1 \\ 0 & M^{-1} \end{pmatrix}, \quad \rho(b) = \begin{pmatrix} M & 0 \\ -z & M^{-1} \end{pmatrix}.
\]

We have \(x = \text{tr} a = M + M^{-1} \) and \(z = x^2 - 2 - y \) where \(y = \text{tr} ab \). Let \(\lambda = \tilde{w}w^{-2e} \), where \(\tilde{w} \) is the word obtained from \(w \) by writing the letters in \(w \) in reversed order (i.e. by interchanging \(a \) and \(b \)), and \(e \) is the sum of the exponents of the letters in \(w \). Then \(\lambda \) represents the longitude of the boundary torus of the knot complement, and we define \(\mathcal{L}(M, y) \) to be the upper left entry of the matrix \(\rho(\lambda) \). Then up to a factor of the form an integral power of \(M \), \(\mathcal{L}(M, y) \) is a polynomial. Because \(x = M + M^{-1} \) we can consider \(\Phi \) as a function in \(M \) and \(y \), up to a factor of the form \(M \) to an integral power it is a polynomial. The A-polynomial \(A(L, M) \) can be computed by deleting repeated factors from the resultant \(\text{Res}(\Phi(M, y), \mathcal{L}(M, y) - L) \), where the resultant is computed with respect to \(y \).

The description above can be implemented for computer calculations.
Example 1.1. The A-polynomial of $b(3, 1)$ (the trefoil) is $LM^0 + 1$, and that of $b(5, 3)$ (the figure-8 knot) is $-LM^8 + LM^6 + L^2M^4 + 2LM^4 + M^4 + LM^2 - L$.

For further details on the A-polynomial of 2-bridge knots we refer to [CCG+94] and [HS04].

1.6. The adjoint representation. The Lie algebra $\mathfrak{sl}_2(\mathbb{C})$ of $SL(2, \mathbb{C})$ consists of 2×2 matrices with zero traces. Consider the adjoint representation of $SL(2, \mathbb{C})$, $Ad : SL(2, \mathbb{C}) \rightarrow Aut(\mathfrak{sl}_2(\mathbb{C}))$. For $A \in SL(2, \mathbb{C})$ and $x \in \mathfrak{sl}_2(\mathbb{C})$ we have $Ad_A(x) = AxA^{-1}$. Since $\mathfrak{sl}_2(\mathbb{C})$ can be identified with \mathbb{C}^3, Ad_A is a linear map on \mathbb{C}^3 and it turns out that it belongs to $SO(3, \mathbb{C})$. If $\rho \in R(\pi)$ then the composition $Ad \circ \rho$ is a representation of π to $SO(3, \mathbb{C})$.

2. Irreducibility of the A-polynomial of 2-bridge knots

2.1. Introduction. In his recent study on the AJ conjecture which relates the A-polynomial and the colored Jones polynomial of a knot, Thang Le [Le04] proved that for a 2-bridge knot $b(p, q)$ the AJ conjecture holds true if the A-polynomial is irreducible and has L-degree $(p - 1)/2$. In this chapter we will provide a proof for the result (Theorem 2.5 below) that the above condition is satisfied if both p and $(p - 1)/2$ are prime and $q \neq 1$.

In a related result, recently Hoste and Shanahan [HS04] using trace field theory have proved that the A-polynomial of the twist knot K_n, which is the 2-bridge knot $b(4n + 1, 2n + 1)$, is irreducible. From their recursive formula it can be checked easily that the L-degree is exactly 2n.

2.2. Proofs. Let $\Phi_n(x, y) = \Phi_{(p, 1)}(x, y)$, where $p = 2n + 1$. It has been shown in [Le93] Proposition 4.3.1] (also see below) that $\Phi_n(x, y)$ does not depend on x.

Proposition 2.1. $\Phi_n(y)$ is irreducible if and only if $2n + 1$ is prime.

Proof. It is immediate from [Le93] Proposition 4.3.1] that $\Phi_n(2y) = (T_n(y) + T_{n+1}(y))/(y + 1)$, where T_n is the n-th Chebyshev polynomial (of the first kind). Let $\Phi_n(y) = \Phi_{n}(2y)$. It is well-known that by letting $\theta = \cos y$, we can write $T_n(y) = \cos(n\theta)$, and so $\Phi_n(\theta) = \cos ((2n+1)\theta)/\cos(\theta/2)$. It also follows that $\Phi_n(y)$ is an integer polynomial of degree n with exactly n roots given by $y = \cos (\frac{k+1}{2n+1}\pi), 0 \leq k \leq n - 1$. Fix $\theta = \pi/p$. Noting that Φ_n has no integer factor since $\Phi_n(0) = \pm 1$ we see that Φ_n is irreducible, and so is Φ_n, if and only if the extension field degree $[\mathbb{Q}(\cos \theta) : \mathbb{Q}]$ is exactly the degree of Φ_n.

Noticing that $\cos \theta = (e^{i\theta} + e^{-i\theta})/2$, we want to study the extension field $\mathbb{Q}(e^{i\theta})$. It is well-known (see, e.g. [Lan93 p. 276]) that the irreducible polynomial of $e^{i\theta}$ is the
cyclo
tic polynomial
\[C_{2p}(y) = \prod_{1 \leq d \leq 2p, (d, 2p) = 1} (x - e^{2\pi i/p}). \]
This is an integer polynomial whose degree is \(\varphi(2p) = \varphi(p) \), here \(\varphi \) is the Euler totient function. Thus the degree of the extension field is \([\mathbb{Q}(e^{2\pi i}) : \mathbb{Q}] = \varphi(p)\). From the identity \((x - e^{2\pi i})(x - e^{-2\pi i}) = x^2 - 2(\cos \theta)x + 1\), we see that \([\mathbb{Q}(e^{2\pi i}) : \mathbb{Q}(\cos \theta)] = 2\), thus \([\mathbb{Q}(\cos \theta) : \mathbb{Q}] = \varphi(p)/2\). Therefore \(\Phi_n \) is irreducible if and only if \(\varphi(p) = p - 1 \), which happens if and only if \(p \) is prime. □

Proposition 2.2. We have \(\Phi_{(p,q)}(0,y) = \Phi_{(p,1)}(y) \). Hence if \(\Phi_{(p,1)}(y) \) is irreducible then \(\Phi_{(p,q)}(x,y) \) is also irreducible.

Proof. Recall from section 1.5 that we can write \(\rho(a) = (M^1, 0) \) and \(\rho(b) = (M^{-1}, 0) \), where \(M + M^{-1} = x \) and \(z = x^2 - 2y \). If \(x = \text{tr}a = \text{tr}b = M + M^{-1} = 0 \) then it is immediate that \(\rho(a^{-1}) = -\rho(a) \) and \(\rho(b^{-1}) = -\rho(b) \) (this can also be seen from the Cayley-Hamilton Theorem: the characteristic polynomial of \(\rho(a) \) is \(t^2 - (\text{tr}a)t + 1 \).

Recall that \(\Phi_{(p,q)}(x,y) = \text{tr}w - \text{tr}w' + \cdots + (-1)^{n-1} \text{tr}w^{(n-1)} + (-1)^n \). Because the word \(w \) is palindromic, so is each word \(w^{(i)}, 0 \leq i \leq n - 1 \), and hence in \(w^{(i)} \) we have \(a^{-1} \) and \(b^{-1} \) appear in pairs. That means \(\rho(w^{(i)}) \) does not change if we replace \(a^{-1} \) by \(a \) and \(b^{-1} \) by \(b \). Thus \(\rho(w^{(i)}) = \rho((ab)^{n-i}) \). Recalling that for a torus knot \(b(p, 1) \) we have \(w = (ab)^n \), the result follows. □

Because \(x = M + M^{-1} \) we can consider \(\Phi \) as a function in \(M \) and \(y \), and it is a polynomial up to a factor of the form \(M \) to an integral power, which is omitted.

Proposition 2.3. If \(\Phi(M,y) \) is irreducible then \(A(L, M) \) is irreducible.

Proof. Recall from Section 1.5 that the A-polynomial \(A(L, M) \) of a 2-bridge knot can be computed by deleting repeated factors from \(\text{Res}(\Phi(M,y), \mathcal{L}(M,y) - L) \), where \(\mathcal{L}(M,y) \) is a polynomial and the resultant is computed with respect to \(y \).

We have \(A(L, M) = 0 \) if and only if there is \(y \) such that \(\Phi(M,y) = 0 \) and \(\mathcal{L}(M,y) = L \). Writing \(Z(f) \) for the zero set of a polynomial \(f \), we see that for each \((M, L) \in Z(A(L, M)) \) there is \((M, y) \in Z(\Phi(M,y)) \) such that \((M, \mathcal{L}(M,y)) = (M, L) \).

In what follows we use some simple notions in algebraic geometry, which can be found for example in [Har77]. Consider the map \(pr : \mathbb{C}^2 \to \mathbb{C}^2 \) given by \(pr(u,v) = (u, \mathcal{L}(u,v)) \). This map is continuous under the Zariski topology. It projects \(Z(\Phi(M,y)) \) onto \(Z(A(L, M)) \).

Note that \(f \) is an irreducible polynomial if and only if \(Z(f) \) is an irreducible algebraic set. Now suppose that the A-polynomial is reducible, hence \(Z(A(L, M)) \) is a union of two nonempty closed subsets \(B \) and \(C \). Then \(pr^{-1}(B) \cap Z(\Phi) \) and
pr^{-1}(C) \cap Z(\Phi) are two nonempty closed sets whose union is Z(\Phi). This implies that \Phi(M, y) is reducible, a contradiction. \qed

Proposition 2.4. If the L-degree of A(L, M) is 1 then q = 1, and so b(p, q) is the torus knot T(2, p).

The idea for the following proof was communicated to us by Nathan Dunfield. We also thank Xingru Zhang for a discussion on this topic.

Proof. We need the concept of Newton polygons of A-polynomials. The Newton polygon of A(L, M) is the convex hull of the set of points (i, j) on the real LM-plane such that the coefficient \(a_{ij}\) of the term \(a_{ij}L^iM^j\) of A(L, M) is nonzero. The slopes of the sides of the Newton polygon are boundary slopes of incompressible surfaces in the knot complement (CCG+94).

For example the following figure shows the Newton polygon of the torus knot \(b(3, 1) = T(2, 3)\) (the trefoil) whose A-polynomial is \(LM^6 + 1\), and that of \(b(5, 3)\) (the figure-8 knot) whose A-polynomial is \(-LM^8 + LM^6 + L^2M^4 + 2LM^4 + M^4 + LM^2 - L\).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{newton_polygons}
\caption{Newton polygons of the A-polynomials of \(b(3, 1)\) and \(b(5, 3)\).}
\end{figure}

Suppose that the L-degree of A(L, M) is 1. This means that the Newton polygon either has \(\infty\) as a slope, or has only one edge. The Hatcher-Thurston classification of incompressible surfaces in 2-bridge knot complements [HT85, Proposition 2] shows that actually \(\infty\) cannot be a slope, in fact all boundary slopes are integers.

Thus the Newton polygon has only one edge. For a hyperbolic knot the Newton polygon has at least two distinct sides. Thus the knot is non-hyperbolic.

Since 2-bridge knots are alternating ([BZ03]) a theorem of Menasco [Men84] says that the knot can only be a torus knot. Since the bridge number of a torus knot T(p, q) is at least \(\min\{p, q\}\), the torus knot must be \(T(2, p) = b(p, 1)\).
Note that for a torus knot \(T(2, p) \) indeed \(A(L, M) = LM^{2p} + 1 \) ([HS04, Zha04]) having \(L \)-degree 1.

Theorem 2.5. If \(p \) is prime then the A-polynomial of \(b(p, q) \) is irreducible. Furthermore if \((p - 1)/2 \) is also prime and \(q \neq 1 \) then the \(L \)-degree of \(A(L, M) \) is \((p - 1)/2 \).

Proof. The first part follows from Propositions 2.1, 2.2 and 2.3. We prove the second part.

First we claim that the \(y \)-degree of \(\Phi_{(p,q)}(M,y) \) is \(n = (p - 1)/2 \). Indeed, look at \(\Phi_{(p,q)}(M,y) = \text{tr} w - \text{tr} w + \cdots + (-1)^{n-1} \text{tr} w^{(n-1)} + (-1)^n \). Because the letter \(b \) appears \(n \) times in the word \(w \), the entries of the matrix \(\rho(w) \) have \(z \)-degrees, hence \(y \)-degrees, at most \(n \). So the \(y \)-degree of \(\Phi_{(p,q)}(M,y) \) is at most \(n \). On the other hand Proposition 2.2 and the proof of Proposition 2.1 show that the \(y \)-degree is at least \(n \), so the claim follows.

From the determinant description of resultant ([Lan93, p. 200]) it is clear that \(\text{Res}(\Phi(M,y), \mathcal{L}(M,y) - L) \) has degree \(n \) in \(L \). Since \(A(L, M) \) is irreducible we have a positive integer \(k \) such that \(A^k(M, L) = \text{Res}(\Phi(M,y), \mathcal{L}(M,y) - L) \). Thus the \(L \)-degree \(\ell \) of \(A(L, M) \) must be a factor of \(n \). If \(n \) is prime then \(\ell \) can only be 1 or \(n \). If \(\ell = 1 \) then the knot is a torus knot and \(q = 1 \) according to Proposition 2.4. \(\square \)

3. **Twisted Alexander polynomial and the A-polynomial of 2-bridge knots**

Definition 3.1. Let \(\pi = \langle a, b/r = waw^{-1}b^{-1} = 1 \rangle \). Let \(\rho \) be the representation of the free group \(\langle a, b \rangle \) defined by the formula

\[
\rho(a) = \begin{pmatrix} M & 1 \\ 0 & M^{-1} \end{pmatrix}, \quad \rho(b) = \begin{pmatrix} M & 0 \\ -z & M^{-1} \end{pmatrix}.
\]

Extend the map \(Ad \circ \rho \) linearly, and consider \(M \) and \(z \) as formal variables. The twisted Alexander polynomial \(\Delta^d_K(M, z) \) associated to \(\pi \) is defined by

\[
\Delta^d_K(M, z) = \gcd(\det(Ad \circ \rho(\partial r/\partial a)), \det(Ad \circ \rho(\partial r/\partial b))) \in \mathbb{C}[M^{\pm 1}, z^{\pm 1}].
\]

It is a polynomial in \(M \) and \(z \) up to a factor \(\pm M^{m}z^{n} \).

For each pair \((L_0, M_0) \) such that \(A_K(L_0, M_0) = 0 \) there is a finite number of numbers \(z_i \in \mathbb{C} \) such that both polynomial equations \(\Phi(M_0, z_i) = 0 \) and \(\mathcal{L}(M_0, z_i) = L_0 \) are satisfied.

Proposition 3.2. Except for finitely many pairs \((L_0, M_0) \), if \(A_K(L_0, M_0) = 0 \) then \(\Delta^d_K(M_0, z_i) = 0 \).
Theorem asserts that if \(\rho \) vector space to a subspace of the first cohomology group \(H^1(X) \) of \(\partial X \) by the 6-matrix (3.2)

\[
\rho(a) = \begin{pmatrix} M_0 & 1 \\ 0 & M_0^{-1} \end{pmatrix}, \quad \rho(b) = \begin{pmatrix} M_0 & 0 \\ -z_t & M_0^{-1} \end{pmatrix}.
\]

Following a standard argument, the knot complement \(X \) is simple homotopic to a 2-dimensional cell complex with one 0-cell, two 1-cells and one 2-cell. Letting \(\widetilde{X} \) be the universal cover, we can consider the cochain complex of complex vector spaces:

\[
0 \leftarrow \mathbb{C}^3 \otimes \mathbb{Z}[\pi_1, \text{Ad}_{\rho}] C^2(\widetilde{X}) \xleftarrow{\partial_2} \mathbb{C}^3 \otimes \mathbb{Z}[\pi_1, \text{Ad}_{\rho}] C^1(\widetilde{X}) \xleftarrow{\partial_1} \mathbb{C}^3 \otimes \mathbb{Z}[\pi_1, \text{Ad}_{\rho}] C^0(\widetilde{X}) \leftarrow 0.
\]

Here \(\partial_2 \) is represented by the \(3 \times 6 \)-matrix (\(\text{Ad}_{\rho}(\partial r / \partial a) \) \(\text{Ad}_{\rho}(\partial r / \partial b) \)) and \(\partial_1 \) is represented by the \(6 \times 3 \)-matrix (\(\text{Ad}_{\rho}(b) - 1 \)). A direct computation shows that \(\text{Ad} \circ \rho(b - 1) \) is nonsingular. Thus \(\text{rank}(\text{Im} \partial_1) = 3 \). The first cohomology group with local coefficients of \(X \) is \(H^1_{\text{Ad}_{\rho}}(X) = \text{ker} \partial_2 / \text{Im} \partial_1 \).

At this point we use a theorem of Weil [Wei64] (see [Por97, p. 69], [BZ00]). The theorem asserts that if \(\rho \) is an irreducible representation then the Zariski tangent \(T^2_{\chi_{\rho}}(X(\pi)) \) of the character variety \(X(\pi) \) at the point \(\chi_{\rho} \) is isomorphic as complex vector space to a subspace of the first cohomology group \(H^1_{\text{Ad}_{\rho}}(X) \). For the Zariski tangent space at a point \(P \) of an algebraic variety \(Y \) we always have \(\text{rank} T^2_{\rho}(Y) \geq \text{rank}(Y) \). In this case because the point \(\chi_{\rho} \) arises from a point on the curve defined by \(A(L, M) \), the dimension of the irreducible component of \(X(\pi) \) containing \(\chi_{\rho} \) is at least one (we can also evoke a theorem of Thurston to this effect, see e.g. [CS83 Proposition 3.2.1]). Thus \(\text{rank} T^2_{\chi_{\rho}}(X(\pi)) \geq 1 \), hence \(\text{rank} H^1_{\text{Ad}_{\rho}}(X) \geq 1 \).

Since \(\text{rank}(\ker \partial_2 / \text{Im} \partial_1) \geq 1 \) and \(\text{rank}(\text{Im} \partial_1) = 3 \) it follows that \(\text{rank}(\ker \partial_2) \geq 4 \), hence \(\text{rank}(\text{Im} \partial_2) \leq 2 \). This means that both \(3 \times 3 \)-matrices \(\text{Ad} \circ \rho(\partial r / \partial a) \) and \(\text{Ad} \circ \rho(\partial r / \partial b) \) have ranks less than three and thus are singular. Hence \(\text{det}(\text{Ad} \circ \rho(\partial r / \partial a)) = \text{det}(\text{Ad} \circ \rho(\partial r / \partial b)) = 0 \). This means \(\Delta_K^{\text{Ad}}(M, z) \) vanishes when it is evaluated at \((M_0, z_t) \).

In the special case of a twist knot \(K_n \), which is the 2-bridge knot \(b(4n + 1, 2n + 1) \), it is shown in [HS04, p. 203] (note that \(K_n = J(2, -2n) \) in their notation) that the correspondence \(z_t \mapsto L_0 \) is one-to-one. Specifically \(z \) can be expressed in terms of \(L \) and \(M \) as

\[
z = \frac{(1 - L)(1 - M^2)}{L + M^2}.
\]

Using this change of variable we can write the twisted Alexander polynomial \(\Delta_K^{\text{Ad}}(M, z) \) as a polynomial \(\Delta_K^{\text{Ad}}(L, M) \).
Theorem 3.3. If \(K \) is twist knot then the polynomial \(A_K(L, M) \) is a factor of the polynomial \(\Delta^\text{Ad}_K(L, M) \).

Proof. For a twist knot Proposition 3.2 says that the zero set \(Z(A) \) of the A-polynomial \(A(L, M) \) minus a set \(I \) consists of finitely many points is contained in the zero set \(Z(\Delta^\text{Ad}) \) of the twisted Alexander polynomial \(\Delta^\text{Ad}(L, M) \). The Zariski closure of \(Z(A) \setminus I \) is exactly \(Z(A) \). Thus we have \(Z(A) \subset Z(\Delta^\text{Ad}) \) and so \(A(L, M) \) is a factor of \(\Delta^\text{Ad}(L, M) \). \(\square \)

References

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF SCIENCE, VIETNAM NATIONAL UNIVERSITY, 227 NGUYEN VAN CU, DIST. 5, HO CHI MINH CITY, VIETNAM
E-mail address: hqvu@hcmus.eduvn

SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA 30332-0160, USA
E-mail address: letu@math.gatech.edu
URL: http://www.math.gatech.edu/~letu